
31
CHAPTER

 1021

Introducing Swing

In Part II, you saw how to build very simple user interfaces with the AWT classes. Although
the AWT is still a crucial part of Java, its component set is no longer widely used to create
graphical user interfaces. Today, most programmers use Swing or JavaFX for this purpose.
JavaFX is discussed in Part IV. Here, Swing is introduced. Swing is a framework that provides
more powerful and flexible GUI components than does the AWT. As a result, it is the GUI
that has been widely used by Java programmers for more than a decade.

Coverage of Swing is divided between three chapters. This chapter introduces Swing. It
begins by describing Swing’s core concepts. It then shows the general form of a Swing
program, including both applications and applets. It concludes by explaining how painting
is accomplished in Swing. The next chapter presents several commonly used Swing
components. The third chapter introduces Swing-based menus. It is important to understand
that the number of classes and interfaces in the Swing packages is quite large, and they can’t
all be covered in this book. (In fact, full coverage of Swing requires an entire book of its own.)
However, these three chapters will give you a basic understanding of this important topic.

NOTE For a comprehensive introduction to Swing, see my book Swing: A Beginner's Guide published by
McGraw-Hill Professional (2007).

The Origins of Swing
Swing did not exist in the early days of Java. Rather, it was a response to deficiencies present
in Java’s original GUI subsystem: the Abstract Window Toolkit. The AWT defines a basic set
of controls, windows, and dialog boxes that support a usable, but limited graphical interface.
One reason for the limited nature of the AWT is that it translates its various visual components
into their corresponding, platform-specific equivalents, or peers. This means that the look
and feel of a component is defined by the platform, not by Java. Because the AWT components
use native code resources, they are referred to as heavyweight.

The use of native peers led to several problems. First, because of variations between
operating systems, a component might look, or even act, differently on different platforms.

1022 PART III Introducing GUI Programming with Swing

This potential variability threatened the overarching philosophy of Java: write once, run
anywhere. Second, the look and feel of each component was fixed (because it is defined by
the platform) and could not be (easily) changed. Third, the use of heavyweight components
caused some frustrating restrictions. For example, a heavyweight component was always
opaque.

Not long after Java’s original release, it became apparent that the limitations and
restrictions present in the AWT were sufficiently serious that a better approach was needed.
The solution was Swing. Introduced in 1997, Swing was included as part of the Java Foundation
Classes (JFC). Swing was initially available for use with Java 1.1 as a separate library. However,
beginning with Java 1.2, Swing (and the rest of the JFC) was fully integrated into Java.

Swing Is Built on the AWT
Before moving on, it is necessary to make one important point: although Swing eliminates
a number of the limitations inherent in the AWT, Swing does not replace it. Instead, Swing is
built on the foundation of the AWT. This is why the AWT is still a crucial part of Java. Swing
also uses the same event handling mechanism as the AWT. Therefore, a basic understanding
of the AWT and of event handling is required to use Swing. (The AWT is covered in
Chapters 25 and 26. Event handling is described in Chapter 24.)

Two Key Swing Features
As just explained, Swing was created to address the limitations present in the AWT. It does
this through two key features: lightweight components and a pluggable look and feel.
Together they provide an elegant, yet easy-to-use solution to the problems of the AWT.
More than anything else, it is these two features that define the essence of Swing. Each
is examined here.

Swing Components Are Lightweight
With very few exceptions, Swing components are lightweight. This means that they are
written entirely in Java and do not map directly to platform-specific peers. Thus,
lightweight components are more efficient and more flexible. Furthermore,
because lightweight components do not translate into native peers, the look and feel
of each component is determined by Swing, not by the underlying operating system. As
a result, each component will work in a consistent manner across all platforms.

Swing Supports a Pluggable Look and Feel
Swing supports a pluggable look and feel (PLAF). Because each Swing component is rendered
by Java code rather than by native peers, the look and feel of a component is under the
control of Swing. This fact means that it is possible to separate the look and feel of a
component from the logic of the component, and this is what Swing does. Separating out
the look and feel provides a significant advantage: it becomes possible to change the way
that a component is rendered without affecting any of its other aspects. In other words, it is
possible to “plug in” a new look and feel for any given component without creating any side
effects in the code that uses that component. Moreover, it becomes possible to define entire

 Chapter 31 Introducing Swing 1023

Pa
rt

 II
I

sets of look-and-feels that represent different GUI styles. To use a specific style, its look and
feel is simply “plugged in.” Once this is done, all components are automatically rendered
using that style.

Pluggable look-and-feels offer several important advantages. It is possible to define a
look and feel that is consistent across all platforms. Conversely, it is possible to create a look
and feel that acts like a specific platform. For example, if you know that an application will
be running only in a Windows environment, it is possible to specify the Windows look and
feel. It is also possible to design a custom look and feel. Finally, the look and feel can be
changed dynamically at run time.

Java 8 provides look-and-feels, such as metal and Nimbus, that are available to all Swing
users. The metal look and feel is also called the Java look and feel. It is platform-independent
and available in all Java execution environments. It is also the default look and feel. Windows
environments also have access to the Windows look and feel. This book uses the default
Java look and feel (metal) because it is platform independent.

The MVC Connection
In general, a visual component is a composite of three distinct aspects:

•	 The way that the component looks when rendered on the screen

•	 The way that the component reacts to the user

•	 The state information associated with the component

No matter what architecture is used to implement a component, it must implicitly contain
these three parts. Over the years, one component architecture has proven itself to be
exceptionally effective: Model-View-Controller, or MVC for short.

The MVC architecture is successful because each piece of the design corresponds to an
aspect of a component. In MVC terminology, the model corresponds to the state information
associated with the component. For example, in the case of a check box, the model contains
a field that indicates if the box is checked or unchecked. The view determines how the
component is displayed on the screen, including any aspects of the view that are affected by
the current state of the model. The controller determines how the component reacts to the
user. For example, when the user clicks a check box, the controller reacts by changing the
model to reflect the user’s choice (checked or unchecked). This then results in the view
being updated. By separating a component into a model, a view, and a controller, the specific
implementation of each can be changed without affecting the other two. For instance,
different view implementations can render the same component in different ways without
affecting the model or the controller.

Although the MVC architecture and the principles behind it are conceptually sound,
the high level of separation between the view and the controller is not beneficial for Swing
components. Instead, Swing uses a modified version of MVC that combines the view and
the controller into a single logical entity called the UI delegate. For this reason, Swing’s
approach is called either the Model-Delegate architecture or the Separable Model architecture.
Therefore, although Swing’s component architecture is based on MVC, it does not use a
classical implementation of it.

1024 PART III Introducing GUI Programming with Swing

Swing’s pluggable look and feel is made possible by its Model-Delegate architecture.
Because the view (look) and controller (feel) are separate from the model, the look and
feel can be changed without affecting how the component is used within a program.
Conversely, it is possible to customize the model without affecting the way that the
component appears on the screen or responds to user input.

To support the Model-Delegate architecture, most Swing components contain two
objects. The first represents the model. The second represents the UI delegate. Models are
defined by interfaces. For example, the model for a button is defined by the ButtonModel
interface. UI delegates are classes that inherit ComponentUI. For example, the UI delegate
for a button is ButtonUI. Normally, your programs will not interact directly with the UI
delegate.

Components and Containers
A Swing GUI consists of two key items: components and containers. However, this distinction is
mostly conceptual because all containers are also components. The difference between the
two is found in their intended purpose: As the term is commonly used, a component is an
independent visual control, such as a push button or slider. A container holds a group of
components. Thus, a container is a special type of component that is designed to hold
other components. Furthermore, in order for a component to be displayed, it must be held
within a container. Thus, all Swing GUIs will have at least one container. Because containers
are components, a container can also hold other containers. This enables Swing to define
what is called a containment hierarchy, at the top of which must be a top-level container.

Let’s look a bit more closely at components and containers.

Components
In general, Swing components are derived from the JComponent class. (The only exceptions
to this are the four top-level containers, described in the next section.) JComponent provides
the functionality that is common to all components. For example, JComponent supports the
pluggable look and feel. JComponent inherits the AWT classes Container and Component.
Thus, a Swing component is built on and compatible with an AWT component.

All of Swing’s components are represented by classes defined within the package
javax.swing. The following table shows the class names for Swing components (including
those used as containers).

JApplet JButton JCheckBox JCheckBoxMenuItem

JColorChooser JComboBox JComponent JDesktopPane

JDialog JEditorPane JFileChooser JFormattedTextField

JFrame JInternalFrame JLabel JLayer

JLayeredPane JList JMenu JMenuBar

JMenuItem JOptionPane JPanel JPasswordField

JPopupMenu JProgressBar JRadioButton JRadioButtonMenuItem

JRootPane JScrollBar JScrollPane JSeparator

JSlider JSpinner JSplitPane JTabbedPane

 Chapter 31 Introducing Swing 1025

Pa
rt

 II
I

JTable JTextArea JTextField JTextPane

JTogglebutton JToolBar JToolTip JTree

JViewport JWindow

Notice that all component classes begin with the letter J. For example, the class for a label
is JLabel; the class for a push button is JButton; and the class for a scroll bar is JScrollBar.

Containers
Swing defines two types of containers. The first are top-level containers: JFrame, JApplet,
JWindow, and JDialog. These containers do not inherit JComponent. They do, however,
inherit the AWT classes Component and Container. Unlike Swing’s other components,
which are lightweight, the top-level containers are heavyweight. This makes the top-level
containers a special case in the Swing component library.

As the name implies, a top-level container must be at the top of a containment hierarchy.
A top-level container is not contained within any other container. Furthermore, every
containment hierarchy must begin with a top-level container. The one most commonly
used for applications is JFrame. The one used for applets is JApplet.

The second type of containers supported by Swing are lightweight containers. Lightweight
containers do inherit JComponent. An example of a lightweight container is JPanel, which
is a general-purpose container. Lightweight containers are often used to organize and manage
groups of related components because a lightweight container can be contained within
another container. Thus, you can use lightweight containers such as JPanel to create
subgroups of related controls that are contained within an outer container.

The Top-Level Container Panes
Each top-level container defines a set of panes. At the top of the hierarchy is an instance
of JRootPane. JRootPane is a lightweight container whose purpose is to manage the other
panes. It also helps manage the optional menu bar. The panes that comprise the root pane
are called the glass pane, the content pane, and the layered pane.

The glass pane is the top-level pane. It sits above and completely covers all other panes.
By default, it is a transparent instance of JPanel. The glass pane enables you to manage
mouse events that affect the entire container (rather than an individual control) or to paint
over any other component, for example. In most cases, you won’t need to use the glass
pane directly, but it is there if you need it.

The layered pane is an instance of JLayeredPane. The layered pane allows components
to be given a depth value. This value determines which component overlays another. (Thus,
the layered pane lets you specify a Z-order for a component, although this is not something
that you will usually need to do.) The layered pane holds the content pane and the (optional)
menu bar.

Although the glass pane and the layered panes are integral to the operation of a top-level
container and serve important purposes, much of what they provide occurs behind the scene.
The pane with which your application will interact the most is the content pane, because
this is the pane to which you will add visual components. In other words, when you add a
component, such as a button, to a top-level container, you will add it to the content pane.
By default, the content pane is an opaque instance of JPanel.

1026 PART III Introducing GUI Programming with Swing

The Swing Packages
Swing is a very large subsystem and makes use of many packages. At the time of this writing,
these are the packages defined by Swing.

javax.swing javax.swing.plaf.basic javax.swing.text

javax.swing.border javax.swing.plaf.metal javax.swing.text.html

javax.swing.colorchooser javax.swing.plaf.multi javax.swing.text.html.parser

javax.swing.event javax.swing.plaf.nimbus javax.swing.text.rtf

javax.swing.filechooser javax.swing.plaf.synth javax.swing.tree

javax.swing.plaf javax.swing.table javax.swing.undo

The main package is javax.swing. This package must be imported into any program that
uses Swing. It contains the classes that implement the basic Swing components, such as
push buttons, labels, and check boxes.

A Simple Swing Application
Swing programs differ from both the console-based programs and the AWT-based programs
shown earlier in this book. For example, they use a different set of components and a different
container hierarchy than does the AWT. Swing programs also have special requirements that
relate to threading. The best way to understand the structure of a Swing program is to work
through an example. There are two types of Java programs in which Swing is typically used.
The first is a desktop application. The second is the applet. This section shows how to create
a Swing application. The creation of a Swing applet is described later in this chapter.

Although quite short, the following program shows one way to write a Swing
application. In the process, it demonstrates several key features of Swing. It uses two Swing
components: JFrame and JLabel. JFrame is the top-level container that is commonly used
for Swing applications. JLabel is the Swing component that creates a label, which is a
component that displays information. The label is Swing’s simplest component because
it is passive. That is, a label does not respond to user input. It just displays output. The
program uses a JFrame container to hold an instance of a JLabel. The label displays a
short text message.

// A simple Swing application.

import javax.swing.*;

class SwingDemo {

 SwingDemo() {

 // Create a new JFrame container.
 JFrame jfrm = new JFrame("A Simple Swing Application");

 Chapter 31 Introducing Swing 1027

Pa
rt

 II
I

 // Give the frame an initial size.
 jfrm.setSize(275, 100);

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create a text-based label.
 JLabel jlab = new JLabel(" Swing means powerful GUIs.");

 // Add the label to the content pane.
 jfrm.add(jlab);

 // Display the frame.
 jfrm.setVisible(true);
 }

 public static void main(String args[]) {
 // Create the frame on the event dispatching thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new SwingDemo();
 }
 });
 }
}

Swing programs are compiled and run in the same way as other Java applications. Thus,
to compile this program, you can use this command line:

javac SwingDemo.java

To run the program, use this command line:

java SwingDemo

When the program is run, it will produce a window similar to that shown in Figure 31-1.
Because the SwingDemo program illustrates several core Swing concepts, we will

examine it carefully, line by line. The program begins by importing javax.swing. As
mentioned, this package contains the components and models defined by Swing. For
example, javax.swing defines classes that implement labels, buttons, text controls, and
menus. It will be included in all programs that use Swing.

Figure 31-1 The window produced by the SwingDemo program

1028 PART III Introducing GUI Programming with Swing

Next, the program declares the SwingDemo class and a constructor for that class.
The constructor is where most of the action of the program occurs. It begins by creating
a JFrame, using this line of code:

JFrame jfrm = new JFrame("A Simple Swing Application");

This creates a container called jfrm that defines a rectangular window complete with a title
bar; close, minimize, maximize, and restore buttons; and a system menu. Thus, it creates a
standard, top-level window. The title of the window is passed to the constructor.

Next, the window is sized using this statement:

jfrm.setSize(275, 100);

The setSize() method (which is inherited by JFrame from the AWT class Component) sets
the dimensions of the window, which are specified in pixels. Its general form is shown here:

void setSize(int width, int height)

In this example, the width of the window is set to 275 and the height is set to 100.
By default, when a top-level window is closed (such as when the user clicks the close

box), the window is removed from the screen, but the application is not terminated.
While this default behavior is useful in some situations, it is not what is needed for most
applications. Instead, you will usually want the entire application to terminate when its
top-level window is closed. There are a couple of ways to achieve this. The easiest way is to
call setDefaultCloseOperation(), as the program does:

jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

After this call executes, closing the window causes the entire application to terminate. The
general form of setDefaultCloseOperation() is shown here:

void setDefaultCloseOperation(int what)

The value passed in what determines what happens when the window is closed. There are
several other options in addition to JFrame.EXIT_ON_CLOSE. They are shown here:

DISPOSE_ON_CLOSE

HIDE_ON_CLOSE

DO_NOTHING_ON_CLOSE

Their names reflect their actions. These constants are declared in WindowConstants, which
is an interface declared in javax.swing that is implemented by JFrame.

The next line of code creates a Swing JLabel component:

JLabel jlab = new JLabel(" Swing means powerful GUIs.");

JLabel is the simplest and easiest-to-use component because it does not accept user input. It
simply displays information, which can consist of text, an icon, or a combination of the two.
The label created by the program contains only text, which is passed to its constructor.

The next line of code adds the label to the content pane of the frame:

jfrm.add(jlab);

 Chapter 31 Introducing Swing 1029

Pa
rt

 II
I

As explained earlier, all top-level containers have a content pane in which components are
stored. Thus, to add a component to a frame, you must add it to the frame’s content pane.
This is accomplished by calling add() on the JFrame reference (jfrm in this case). The
general form of add() is shown here:

Component add(Component comp)

The add() method is inherited by JFrame from the AWT class Container.
By default, the content pane associated with a JFrame uses border layout. The version

of add() just shown adds the label to the center location. Other versions of add() enable
you to specify one of the border regions. When a component is added to the center, its size
is adjusted automatically to fit the size of the center.

Before continuing, an important historical point needs to be made. Prior to JDK 5,
when adding a component to the content pane, you could not invoke the add() method
directly on a JFrame instance. Instead, you needed to call add() on the content pane of the
JFrame object. The content pane can be obtained by calling getContentPane() on a JFrame
instance. The getContentPane() method is shown here:

Container getContentPane()

It returns a Container reference to the content pane. The add() method was then called
on that reference to add a component to a content pane. Thus, in the past, you had to use
the following statement to add jlab to jfrm:

jfrm.getContentPane().add(jlab); // old-style

Here, getContentPane() first obtains a reference to content pane, and then add() adds the
component to the container linked to this pane. This same procedure was also required to
invoke remove() to remove a component and setLayout() to set the layout manager for
the content pane. You will see explicit calls to getContentPane() frequently throughout
pre-5.0 code. Today, the use of getContentPane() is no longer necessary. You can simply
call add(), remove(), and setLayout() directly on JFrame because these methods have
been changed so that they operate on the content pane automatically.

The last statement in the SwingDemo constructor causes the window to become visible:

jfrm.setVisible(true);

The setVisible() method is inherited from the AWT Component class. If its argument is true,
the window will be displayed. Otherwise, it will be hidden. By default, a JFrame is invisible,
so setVisible(true) must be called to show it.

Inside main(), a SwingDemo object is created, which causes the window and the label
to be displayed. Notice that the SwingDemo constructor is invoked using these lines of code:

SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new SwingDemo();
 }
});

This sequence causes a SwingDemo object to be created on the event dispatching thread
rather than on the main thread of the application. Here’s why. In general, Swing programs
are event-driven. For example, when a user interacts with a component, an event is

1030 PART III Introducing GUI Programming with Swing

generated. An event is passed to the application by calling an event handler defined by the
application. However, the handler is executed on the event dispatching thread provided by
Swing and not on the main thread of the application. Thus, although event handlers are
defined by your program, they are called on a thread that was not created by your program.

To avoid problems (including the potential for deadlock), all Swing GUI components
must be created and updated from the event dispatching thread, not the main thread of
the application. However, main() is executed on the main thread. Thus, main() cannot
directly instantiate a SwingDemo object. Instead, it must create a Runnable object that
executes on the event dispatching thread and have this object create the GUI.

To enable the GUI code to be created on the event dispatching thread, you must use
one of two methods that are defined by the SwingUtilities class. These methods are
invokeLater() and invokeAndWait(). They are shown here:

static void invokeLater(Runnable obj)

static void invokeAndWait(Runnable obj)
 throws InterruptedException, InvocationTargetException

Here, obj is a Runnable object that will have its run() method called by the event dispatching
thread. The difference between the two methods is that invokeLater() returns immediately,
but invokeAndWait() waits until obj.run() returns. You can use one of these methods to
call a method that constructs the GUI for your Swing application, or whenever you need to
modify the state of the GUI from code not executed by the event dispatching thread. You
will normally want to use invokeLater(), as the preceding program does. However, when
constructing the initial GUI for an applet, you will need to use invokeAndWait().

Event Handling
The preceding example showed the basic form of a Swing program, but it left out one
important part: event handling. Because JLabel does not take input from the user, it does not
generate events, so no event handling was needed. However, the other Swing components do
respond to user input and the events generated by those interactions need to be handled.
Events can also be generated in ways not directly related to user input. For example, an event
is generated when a timer goes off. Whatever the case, event handling is a large part of any
Swing-based application.

The event handling mechanism used by Swing is the same as that used by the AWT.
This approach is called the delegation event model, and it is described in Chapter 24. In
many cases, Swing uses the same events as does the AWT, and these events are packaged
in java.awt.event. Events specific to Swing are stored in javax.swing.event.

Although events are handled in Swing in the same way as they are with the AWT, it is
still useful to work through a simple example. The following program handles the event
generated by a Swing push button. Sample output is shown in Figure 31-2.

Figure 31-2 Output from the EventDemo program

 Chapter 31 Introducing Swing 1031

Pa
rt

 II
I

// Handle an event in a Swing program.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

class EventDemo {

 JLabel jlab;

 EventDemo() {

 // Create a new JFrame container.
 JFrame jfrm = new JFrame("An Event Example");

 // Specify FlowLayout for the layout manager.
 jfrm.setLayout(new FlowLayout());

 // Give the frame an initial size.
 jfrm.setSize(220, 90);

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Make two buttons.
 JButton jbtnAlpha = new JButton("Alpha");
 JButton jbtnBeta = new JButton("Beta");

 // Add action listener for Alpha.
 jbtnAlpha.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 jlab.setText("Alpha was pressed.");
 }
 });

 // Add action listener for Beta.
 jbtnBeta.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 jlab.setText("Beta was pressed.");
 }
 });

 // Add the buttons to the content pane.
 jfrm.add(jbtnAlpha);
 jfrm.add(jbtnBeta);

 // Create a text-based label.
 jlab = new JLabel("Press a button.");

 // Add the label to the content pane.
 jfrm.add(jlab);

 // Display the frame.
 jfrm.setVisible(true);
 }

1032 PART III Introducing GUI Programming with Swing

 public static void main(String args[]) {
 // Create the frame on the event dispatching thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new EventDemo();
 }
 });
 }
}

First, notice that the program now imports both the java.awt and java.awt.event
packages. The java.awt package is needed because it contains the FlowLayout class, which
supports the standard flow layout manager used to lay out components in a frame. (See
Chapter 26 for coverage of layout managers.) The java.awt.event package is needed
because it defines the ActionListener interface and the ActionEvent class.

The EventDemo constructor begins by creating a JFrame called jfrm. It then sets
the layout manager for the content pane of jfrm to FlowLayout. Recall that, by default, the
content pane uses BorderLayout as its layout manager. However, for this example,
FlowLayout is more convenient. Notice that FlowLayout is assigned using this statement:

jfrm.setLayout(new FlowLayout());

As explained, in the past you had to explicitly call getContentPane() to set the layout
manager for the content pane. This requirement was removed as of JDK 5.

After setting the size and default close operation, EventDemo() creates two push
buttons, as shown here:

JButton jbtnAlpha = new JButton("Alpha");
JButton jbtnBeta = new JButton("Beta");

The first button will contain the text "Alpha" and the second will contain the text "Beta".
Swing push buttons are instances of JButton. JButton supplies several constructors. The
one used here is

JButton(String msg)

The msg parameter specifies the string that will be displayed inside the button.
When a push button is pressed, it generates an ActionEvent. Thus, JButton provides

the addActionListener() method, which is used to add an action listener. (JButton also
provides removeActionListener() to remove a listener, but this method is not used by the
program.) As explained in Chapter 24, the ActionListener interface defines only one
method: actionPerformed(). It is shown again here for your convenience:

void actionPerformed(ActionEvent ae)

This method is called when a button is pressed. In other words, it is the event handler that
is called when a button press event has occurred.

Next, event listeners for the button’s action events are added by the code shown here:

// Add action listener for Alpha.
jbtnAlpha.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {

 Chapter 31 Introducing Swing 1033

Pa
rt

 II
I

 jlab.setText("Alpha was pressed.");
 }
});

// Add action listener for Beta.
jbtnBeta.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 jlab.setText("Beta was pressed.");
 }
});

Here, anonymous inner classes are used to provide the event handlers for the two buttons.
Each time a button is pressed, the string displayed in jlab is changed to reflect which button
was pressed.

Beginning with JDK 8, lambda expressions can also be used to implement event
handlers. For example, the event handler for the Alpha button could be written like this:

 jbtnAlpha.addActionListener((ae) -> jlab.setText("Alpha was pressed."));

As you can see, this code is shorter. For the benefit of readers using versions of Java prior to
JDK 8, subsequent examples will not use lambda expressions, but you should consider using
them for new code that you create.

Next, the buttons are added to the content pane of jfrm:

jfrm.add(jbtnAlpha);
jfrm.add(jbtnBeta);

Finally, jlab is added to the content pane and window is made visible. When you run the
program, each time you press a button, a message is displayed in the label that indicates
which button was pressed.

One last point: Remember that all event handlers, such as actionPerformed(), are
called on the event dispatching thread. Therefore, an event handler must return quickly
in order to avoid slowing down the application. If your application needs to do something
time consuming as the result of an event, it must use a separate thread.

Create a Swing Applet
The second type of program that commonly uses Swing is the applet. Swing-based applets
are similar to AWT-based applets, but with an important difference: A Swing applet extends
JApplet rather than Applet. JApplet is derived from Applet. Thus, JApplet includes all of
the functionality found in Applet and adds support for Swing. JApplet is a top-level Swing
container, which means that it is not derived from JComponent. Because JApplet is a top-
level container, it includes the various panes described earlier. This means that all components
are added to JApplet’s content pane in the same way that components are added to
JFrame’s content pane.

Swing applets use the same four life-cycle methods as described in Chapter 23: init(),
start(), stop(), and destroy(). Of course, you need override only those methods that are
needed by your applet. Painting is accomplished differently in Swing than it is in the AWT,
and a Swing applet will not normally override the paint() method. (Painting in Swing is
described later in this chapter.)

1034 PART III Introducing GUI Programming with Swing

One other point: All interaction with components in a Swing applet must take place
on the event dispatching thread, as described in the previous section. This threading issue
applies to all Swing programs.

Here is an example of a Swing applet. It provides the same functionality as the previous
application, but does so in applet form. Figure 31-3 shows the program when executed by
appletviewer.

// A simple Swing-based applet

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/*
This HTML can be used to launch the applet:

<applet code="MySwingApplet" width=220 height=90>
</applet>
*/

public class MySwingApplet extends JApplet {
 JButton jbtnAlpha;
 JButton jbtnBeta;

 JLabel jlab;

 // Initialize the applet.
 public void init() {
 try {
 SwingUtilities.invokeAndWait(new Runnable () {
 public void run() {
 makeGUI(); // initialize the GUI
 }
 });
 } catch(Exception exc) {
 System.out.println("Can’t create because of "+ exc);
 }
 }

Figure 31-3 Output from the example Swing applet

 Chapter 31 Introducing Swing 1035

Pa
rt

 II
I

 // This applet does not need to override start(), stop(),
 // or destroy().

 // Set up and initialize the GUI.
 private void makeGUI() {

 // Set the applet to use flow layout.
 setLayout(new FlowLayout());

 // Make two buttons.
 jbtnAlpha = new JButton("Alpha");
 jbtnBeta = new JButton("Beta");

 // Add action listener for Alpha.
 jbtnAlpha.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent le) {
 jlab.setText("Alpha was pressed.");
 }
 });

 // Add action listener for Beta.
 jbtnBeta.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent le) {
 jlab.setText("Beta was pressed.");
 }
 });

 // Add the buttons to the content pane.
 add(jbtnAlpha);
 add(jbtnBeta);

 // Create a text-based label.
 jlab = new JLabel("Press a button.");

 // Add the label to the content pane.
 add(jlab);
 }
}

There are two important things to notice about this applet. First, MySwingApplet
extends JApplet. As explained, all Swing-based applets extend JApplet rather than Applet.
Second, the init() method initializes the Swing components on the event dispatching
thread by setting up a call to makeGUI(). Notice that this is accomplished through the use
of invokeAndWait() rather than invokeLater(). Applets must use invokeAndWait() because
the init() method must not return until the entire initialization process has been completed.
In essence, the start() method cannot be called until after initialization, which means that
the GUI must be fully constructed.

Inside makeGUI(), the two buttons and label are created, and the action listeners are
added to the buttons. Finally, the components are added to the content pane. Although
this example is quite simple, this same general approach must be used when building any
Swing GUI that will be used by an applet.

1036 PART III Introducing GUI Programming with Swing

Painting in Swing
Although the Swing component set is quite powerful, you are not limited to using it because
Swing also lets you write directly into the display area of a frame, panel, or one of Swing’s
other components, such as JLabel. Although many (perhaps most) uses of Swing will not
involve drawing directly to the surface of a component, it is available for those applications
that need this capability. To write output directly to the surface of a component, you will
use one or more drawing methods defined by the AWT, such as drawLine() or drawRect().
Thus, most of the techniques and methods described in Chapter 25 also apply to Swing.
However, there are also some very important differences, and the process is discussed in
detail in this section.

Painting Fundamentals
Swing’s approach to painting is built on the original AWT-based mechanism, but Swing’s
implementation offers more finally grained control. Before examining the specifics of
Swing-based painting, it is useful to review the AWT-based mechanism that underlies it.

The AWT class Component defines a method called paint() that is used to draw output
directly to the surface of a component. For the most part, paint() is not called by your
program. (In fact, only in the most unusual cases should it ever be called by your program.)
Rather, paint() is called by the run-time system whenever a component must be rendered.
This situation can occur for several reasons. For example, the window in which the component
is displayed can be overwritten by another window and then uncovered. Or, the window might
be minimized and then restored. The paint() method is also called when a program begins
running. When writing AWT-based code, an application will override paint() when it needs
to write output directly to the surface of the component.

Because JComponent inherits Component, all Swing’s lightweight components inherit
the paint() method. However, you will not override it to paint directly to the surface of a
component. The reason is that Swing uses a bit more sophisticated approach to painting that
involves three distinct methods: paintComponent(), paintBorder(), and paintChildren().
These methods paint the indicated portion of a component and divide the painting process
into its three distinct, logical actions. In a lightweight component, the original AWT method
paint() simply executes calls to these methods, in the order just shown.

To paint to the surface of a Swing component, you will create a subclass of the component
and then override its paintComponent() method. This is the method that paints the interior
of the component. You will not normally override the other two painting methods. When
overriding paintComponent(), the first thing you must do is call super.paintComponent(),
so that the superclass portion of the painting process takes place. (The only time this is not
required is when you are taking complete, manual control over how a component is
displayed.) After that, write the output that you want to display. The paintComponent()
method is shown here:

protected void paintComponent(Graphics g)

The parameter g is the graphics context to which output is written.

 Chapter 31 Introducing Swing 1037

Pa
rt

 II
I

To cause a component to be painted under program control, call repaint(). It works in
Swing just as it does for the AWT. The repaint() method is defined by Component. Calling
it causes the system to call paint() as soon as it is possible to do so. Because painting is a
time-consuming operation, this mechanism allows the run-time system to defer painting
momentarily until some higher-priority task has completed, for example. Of course, in
Swing the call to paint() results in a call to paintComponent(). Therefore, to output to
the surface of a component, your program will store the output until paintComponent()
is called. Inside the overridden paintComponent(), you will draw the stored output.

Compute the Paintable Area
When drawing to the surface of a component, you must be careful to restrict your output
to the area that is inside the border. Although Swing automatically clips any output that will
exceed the boundaries of a component, it is still possible to paint into the border, which will
then get overwritten when the border is drawn. To avoid this, you must compute the paintable
area of the component. This is the area defined by the current size of the component minus
the space used by the border. Therefore, before you paint to a component, you must obtain
the width of the border and then adjust your drawing accordingly.

To obtain the border width, call getInsets(), shown here:

Insets getInsets()

This method is defined by Container and overridden by JComponent. It returns an Insets
object that contains the dimensions of the border. The inset values can be obtained by
using these fields:

int top;

int bottom;

int left;

int right;

These values are then used to compute the drawing area given the width and the height
of the component. You can obtain the width and height of the component by calling
getWidth() and getHeight() on the component. They are shown here:

int getWidth()

int getHeight()

By subtracting the value of the insets, you can compute the usable width and height of the
component.

A Paint Example
Here is a program that puts into action the preceding discussion. It creates a class called
PaintPanel that extends JPanel. The program then uses an object of that class to display
lines whose endpoints have been generated randomly. Sample output is shown in Figure 31-4.

1038 PART III Introducing GUI Programming with Swing

// Paint lines to a panel.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;

// This class extends JPanel. It overrides
// the paintComponent() method so that random
// lines are plotted in the panel.
class PaintPanel extends JPanel {
 Insets ins; // holds the panel’s insets

 Random rand; // used to generate random numbers

 // Construct a panel.
 PaintPanel() {

 // Put a border around the panel.
 setBorder(
 BorderFactory.createLineBorder(Color.RED, 5));

 rand = new Random();
 }

 // Override the paintComponent() method.
 protected void paintComponent(Graphics g) {
 // Always call the superclass method first.
 super.paintComponent(g);

 int x, y, x2, y2;

 // Get the height and width of the component.
 int height = getHeight();
 int width = getWidth();

 // Get the insets.
 ins = getInsets();

 // Draw ten lines whose endpoints are randomly generated.
 for(int i=0; i < 10; i++) {

Figure 31-4 Sample output from the PaintPanel program

 Chapter 31 Introducing Swing 1039

Pa
rt

 II
I

 // Obtain random coordinates that define
 // the endpoints of each line.
 x = rand.nextInt(width-ins.left);
 y = rand.nextInt(height-ins.bottom);
 x2 = rand.nextInt(width-ins.left);
 y2 = rand.nextInt(height-ins.bottom);

 // Draw the line.
 g.drawLine(x, y, x2, y2);
 }
 }
}

// Demonstrate painting directly onto a panel.
class PaintDemo {

 JLabel jlab;
 PaintPanel pp;

 PaintDemo() {

 // Create a new JFrame container.
 JFrame jfrm = new JFrame("Paint Demo");

 // Give the frame an initial size.
 jfrm.setSize(200, 150);

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create the panel that will be painted.
 pp = new PaintPanel();

 // Add the panel to the content pane. Because the default
 // border layout is used, the panel will automatically be
 // sized to fit the center region.
 jfrm.add(pp);

 // Display the frame.
 jfrm.setVisible(true);
 }

 public static void main(String args[]) {
 // Create the frame on the event dispatching thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new PaintDemo();
 }
 });
 }
}

1040 PART III Introducing GUI Programming with Swing

Let’s examine this program closely. The PaintPanel class extends JPanel. JPanel is one of
Swing’s lightweight containers, which means that it is a component that can be added to the
content pane of a JFrame. To handle painting, PaintPanel overrides the paintComponent()
method. This enables PaintPanel to write directly to the surface of the component when
painting takes place. The size of the panel is not specified because the program uses the
default border layout and the panel is added to the center. This results in the panel being
sized to fill the center. If you change the size of the window, the size of the panel will be
adjusted accordingly.

Notice that the constructor also specifies a 5-pixel wide, red border. This is
accomplished by setting the border by using the setBorder() method, shown here:

void setBorder(Border border)

Border is the Swing interface that encapsulates a border. You can obtain a border by calling
one of the factory methods defined by the BorderFactory class. The one used in the program
is createLineBorder(), which creates a simple line border. It is shown here:

static Border createLineBorder(Color clr, int width)

Here, clr specifies the color of the border and width specifies its width in pixels.
Inside the override of paintComponent(), notice that it first calls super.paintComponent().

As explained, this is necessary to ensure that the component is properly drawn. Next, the width
and height of the panel are obtained along with the insets. These values are used to ensure the
lines lie within the drawing area of the panel. The drawing area is the overall width and height
of a component less the border width. The computations are designed to work with differently
sized PaintPanels and borders. To prove this, try changing the size of the window. The lines will
still all lie within the borders of the panel.

The PaintDemo class creates a PaintPanel and then adds the panel to the content pane.
When the application is first displayed, the overridden paintComponent() method is called,
and the lines are drawn. Each time you resize or hide and restore the window, a new set of
lines are drawn. In all cases, the lines fall within the paintable area.

